Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136013

RESUMO

In the present study, 24 rabbits were firstly used to evaluate the apoptosis index and matrix degeneration after untreated adult meniscal tears. Vertical tears (0.25 cm in length) were prepared in the avascular zone of the anterior horn. Specimens were harvested at 1, 3, 6, 12 weeks postoperatively. The apoptosis index around tear sites stayed at a high level throughout the whole follow-up period. The depletion of glycosaminoglycans (GAG) and aggrecan at the tear site was observed, while the deposition of COL I and COL II was not affected, even at the last follow-up of 12 weeks after operation. The expression of SOX9 decreased significantly; no cellularity was observed at the wound interface at all timepoints. Secondly, another 20 rabbits were included to evaluate the effects of anti-apoptosis therapy on rescuing meniscal cells and enhancing meniscus repair. Longitudinal vertical tears (0.5 cm in length) were made in the meniscal avascular body. Tears were repaired by the inside-out suture technique, or repaired with sutures in addition to fibrin gel and blank silica nanoparticles, or silica nanoparticles encapsulating apoptosis inhibitors (z-vad-fmk). Samples were harvested at 12 months postoperatively. We found the locally administered z-vad-fmk agent at the wound interface significantly alleviated meniscal cell apoptosis and matrix degradation, and enhanced meniscal repair in the avascular zone at 12 months after operation. Thus, local administration of caspase inhibitors (z-vad-fmk) is a promising therapeutic strategy for alleviating meniscal cell loss and enhancing meniscal repair after adult meniscal tears in the avascular zone.

2.
Sci Adv ; 9(45): eadg8138, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939174

RESUMO

Meniscus is a complex and crucial fibrocartilaginous tissue within the knee joint. Meniscal regeneration remains to be a scientific and translational challenge. We clarified that mesenchymal stem cells (MSCs) participated in meniscal maturation and regeneration using MSC-tracing transgenic mice model. Here, inspired by meniscal natural maturational and regenerative process, we developed an effective and translational strategy to facilitate meniscal regeneration by three-dimensionally printing biomimetic meniscal scaffold combining autologous synovium transplant, which contained abundant intrinsic MSCs. We verified that this facilitated anisotropic meniscus-like tissue regeneration and protected cartilage from degeneration in large animal model. Mechanistically, the biomechanics and matrix stiffness up-regulated Piezo1 expression, facilitating concerted activation of calcineurin and NFATc1, further activated YAP-pSmad2/3-SOX9 axis, and consequently facilitated fibrochondrogenesis of MSCs during meniscal regeneration. In addition, Piezo1 induced by biomechanics and matrix stiffness up-regulated collagen cross-link enzyme expression, which catalyzed collagen cross-link and thereby enhanced mechanical properties of regenerated tissue.


Assuntos
Menisco , Células-Tronco Mesenquimais , Animais , Camundongos , Menisco/metabolismo , Fibrocartilagem/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colágeno/metabolismo , Modelos Animais , Camundongos Transgênicos , Canais Iônicos/metabolismo
3.
Sci Bull (Beijing) ; 68(17): 1904-1917, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37558534

RESUMO

Osteochondral defects pose a great challenge and a satisfactory strategy for their repair has yet to be identified. In particular, poor repair could result in the generation of fibrous cartilage and subchondral bone, causing the degeneration of osteochondral tissue and eventually leading to repair failure. Herein, taking inspiration from the chemical elements inherent in the natural extracellular matrix (ECM), we proposed a novel ECM-mimicking scaffold composed of natural polysaccharides and polypeptides for osteochondral repair. By meticulously modifying natural biopolymers to form reversible guest-host and rigid covalent networks, the scaffold not only exhibited outstanding biocompatibility, cell adaptability, and biodegradability, but also had excellent mechanical properties that can cater to the environment of osteochondral tissue. Additionally, benefiting from the drug-loading group, chondrogenic and osteogenic drugs could be precisely integrated into the specific zone of the scaffold, providing a tissue-specific microenvironment to facilitate bone and cartilage differentiation. In rabbit osteochondral defects, the ECM-inspired scaffold not only showed a strong capacity to promote hyaline cartilage formation with typical lacuna structure, sufficient mechanical strength, good elasticity, and cartilage-specific ECM deposition, but also accelerated the regeneration of quality subchondral bone with high bone mineralization density. Furthermore, the new cartilage and subchondral bone were heterogeneous, a trait that is typical of the natural landscape, reflecting the gradual progression from cartilage to subchondral bone. These results suggest the potential value of this bioinspired osteochondral scaffold for clinical applications.


Assuntos
Matriz Extracelular , Cartilagem Hialina , Animais , Coelhos , Osso e Ossos , Osteogênese
4.
Adv Sci (Weinh) ; 10(26): e2303650, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424038

RESUMO

In clinical practice, repairing osteochondral defects presents a challenge due to the varying biological properties of articular cartilages and subchondral bones. Thus, elucidating how spatial microenvironment-specific biomimetic scaffolds can be used to simultaneously regenerate osteochondral tissue is an important research topic. Herein, a novel bioinspired double-network hydrogel scaffold produced via 3D printing with tissue-specific decellularized extracellular matrix (dECM) and human adipose mesenchymal stem cell (MSC)-derived exosomes is described. The bionic hydrogel scaffolds promote rat bone marrow MSC attachment, spread, migration, proliferation, and chondrogenic and osteogenic differentiation in vitro, as determined based on the sustained release of bioactive exosomes. Furthermore, the 3D-printed microenvironment-specific heterogeneous bilayer scaffolds efficiently accelerate the simultaneous regeneration of cartilage and subchondral bone tissues in a rat preclinical model. In conclusion, 3D dECM-based microenvironment-specific biomimetics encapsulated with bioactive exosomes can serve as a novel cell-free recipe for stem cell therapy when treating injured or degenerative joints. This strategy provides a promising platform for complex zonal tissue regeneration whilst holding attractive clinical translation potential.


Assuntos
Exossomos , Tecidos Suporte , Ratos , Humanos , Animais , Osteogênese , Hidrogéis , Cartilagem , Regeneração Óssea , Impressão Tridimensional
5.
Front Plant Sci ; 14: 1138693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251760

RESUMO

The content of nicotine, a critical component of tobacco, significantly influences the quality of tobacco leaves. Near-infrared (NIR) spectroscopy is a widely used technique for rapid, non-destructive, and environmentally friendly analysis of nicotine levels in tobacco. In this paper, we propose a novel regression model, Lightweight one-dimensional convolutional neural network (1D-CNN), for predicting nicotine content in tobacco leaves using one-dimensional (1D) NIR spectral data and a deep learning approach with convolutional neural network (CNN). This study employed Savitzky-Golay (SG) smoothing to preprocess NIR spectra and randomly generate representative training and test datasets. Batch normalization was used in network regularization to reduce overfitting and improve the generalization performance of the Lightweight 1D-CNN model under a limited training dataset. The network structure of this CNN model consists of four convolutional layers to extract high-level features from the input data. The output of these layers is then fed into a fully connected layer, which uses a linear activation function to output the predicted numerical value of nicotine. After the comparison of the performance of multiple regression models, including support vector regression (SVR), partial least squares regression (PLSR), 1D-CNN, and Lightweight 1D-CNN, under the preprocessing method of SG smoothing, we found that the Lightweight 1D-CNN regression model with batch normalization achieved root mean square error (RMSE) of 0.14, coefficient of determination (R 2) of 0.95, and residual prediction deviation (RPD) of 5.09. These results demonstrate that the Lightweight 1D-CNN model is objective and robust and outperforms existing methods in terms of accuracy, which has the potential to significantly improve quality control processes in the tobacco industry by accurately and rapidly analyzing the nicotine content.

6.
Cartilage ; 14(1): 106-118, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36444115

RESUMO

OBJECTIVE: To compare the severity of cartilage degeneration after meniscal tears between juvenile and adult rabbits. DESIGN: This study included 20 juvenile rabbits (2 weeks after birth) and 20 adult rabbits (6 months after birth). Meniscal tears were prepared in the anterior horn of medial menisci of right knees. Rabbits were sacrificed at 1, 3, 6, and 12 weeks postoperatively. Cartilage degenerations in the medial femoral condyle and medial tibial plateau were evaluated macroscopically and histologically. The semiquantitative assessment of cartilage degeneration was graded by macroscopic Outerbridge scoring system and histological Osteoarthritis Research Society International (OARSI) scoring system. RESULTS: In juvenile rabbits, the morphologically intact cartilage and normal extracellular matrix architecture were observed at the first week postoperatively. Mild uneven cartilage surface and toluidine blue depletion in the medial femoral condyle were observed on histological assessment at 3 weeks postoperatively. The worsened cartilage deterioration demonstrating chondral fibrillation, prominent cell death, and glycosaminoglycan (GAG) release was observed at 6 and 12 weeks postoperatively. In adult rabbits, only mild cartilage degeneration was observed in the medial femoral condyle at 12 weeks postoperatively. The outcomes of Outerbridge and OARSI scores were consistent with the aforementioned findings in juvenile and adult rabbits. CONCLUSIONS: Our study validated that earlier and more severe cartilage degenerations were observed in juvenile rabbits after meniscal tears compared with adult rabbits. Moreover, the post-tear cartilage degeneration demonstrated regional specificity corresponded to the tear position. However, caution is warranted when extrapolating results of animal models to humans.


Assuntos
Doenças das Cartilagens , Traumatismos do Joelho , Osteoartrite , Adulto , Humanos , Animais , Coelhos , Articulação do Joelho/patologia , Doenças das Cartilagens/patologia , Traumatismos do Joelho/cirurgia , Meniscos Tibiais/cirurgia , Meniscos Tibiais/patologia , Tíbia/patologia , Osteoartrite/patologia
7.
Sci Rep ; 12(1): 22317, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566306

RESUMO

The multiscale elastic response to the macroscopic stress was simulated to reveal the multi-scale correlation of elastic properties of the medium carbon steel. Based on the multiscale correlation constitutive equations derived from this constitutive model, the effective elastic constants (EECs) of medium carbon steel are predicted. In addition, the diffraction elastic constants (DECs) of the constituents of the medium carbon steel are also evaluated. And then, the simple in-situ X-ray diffraction experiments were performed for the measurements of DECs and EECs of treated 35CrMo steel during the four-point bending. Compared with the experimental measurements and different existing models, the results demonstrated that the developed constitutive model was in good agreement with the measured values of the EECs and DECs, and that the feasibility and reliability of the constitutive model used to simulate multiscale elastic response could reveal the correlation between the material and its constitutes.

8.
Nat Commun ; 13(1): 7139, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414669

RESUMO

Emerging evidence suggests that osteoarthritis is associated with high cholesterol levels in some osteoarthritis patients. However, the specific mechanism under this metabolic osteoarthritis phenotype remains unclear. We find that cholesterol metabolism-related gene, LRP3 (low-density lipoprotein receptor-related protein 3) is significantly reduced in high-cholesterol diet mouse's cartilage. By using Lrp3-/- mice in vivo and LRP3 lentiviral-transduced chondrocytes in vitro, we identify that LRP3 positively regulate chondrocyte extracellular matrix metabolism, and its deficiency aggravate the degeneration of cartilage. Regardless of diet, LRP3 overexpression in cartilage attenuate anterior cruciate ligament transection induced osteoarthritis progression in rats and Lrp3 knockout-induced osteoarthritis progression in mice. LRP3 knockdown upregulate syndecan-4 by activating the Ras signaling pathway. We identify syndecan-4 as a downstream molecular target of LRP3 in osteoarthritis pathogenesis. These findings suggest that cholesterol-LRP3- syndecan-4 axis plays critical roles in osteoarthritis development, and LRP3 gene therapy may provide a therapeutic regimen for osteoarthritis treatment.


Assuntos
Proteínas Relacionadas a Receptor de LDL , Osteoartrite , Sindecana-4 , Animais , Camundongos , Ratos , Cartilagem/metabolismo , Colesterol/metabolismo , Regulação para Baixo , Osteoartrite/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo
9.
J Orthop Translat ; 33: 72-89, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35281522

RESUMO

Background: Synovium has been confirmed to be the primary contributor to meniscal repair. Particulated Juvenile Allograft Cartilage (PJAC) has demonstrated promising clinical effect on repairing cartilage. The synergistic effect of synovium and PJAC transplant on meniscal fibrocartilaginous repair is unclear. We hypothesize that the transplantation of synovium and PJAC synergistically facilitates meniscal regeneration and the donor cells within graft tissues still survive in the regenerated tissue at the last follow up (16 weeks postoperatively). Methods: The study included 24 mature female rabbits, which were randomly divided into experimental and control groups. A cylindrical full-thickness defect measuring 2.0 â€‹mm was prepared in the avascular portion of the anterior horn of medial meniscus in both knees. The synovium and PJAC transplant were harvested from juvenile male rabbits (2 months after birth). The experimental group received synovium and PJAC transplant encapsulated with fibrin gel. The control groups received synovium transplant encapsulated with fibrin gel, pure fibrin gel and nothing. The macroscopic, imageological and histological evaluations of repaired tissue were performed at 8 weeks and 16 weeks postoperatively. The in situ hybridization (ISH) of male-specific sex-determining region Y-linked (SRY) gene was performed to detect the transplanted cells. Results: The regenerated tissue in experimental group showed superior structural integrity, superficial smoothness, and marginal integration compared to control groups at 8 weeks or 16 weeks postoperatively. More meniscus-like fibrochondrocytes filled the repaired tissue in the experimental group, and the matrix surrounding these cell clusters demonstrated strongly positive safranin O and type 2 collagen immunohistochemistry staining. By SRY gene ISH, the positive SRY signal of experimental group could be detected at 8 weeks (75.72%, median) and 16 weeks (48.69%, median). The expression of SOX9 in experimental group was the most robust, with median positive rates of 65.52% at 8 weeks and 67.55% at 16 weeks. Conclusion: The transplantation of synovium and PJAC synergistically facilitates meniscal regeneration. The donor cells survive for at least 16 weeks in the recipient. The translational potential of this article: This study highlighted the positive effect of PJAC and synovium transplant on meniscal repair. We also clarified the potential repair mechanisms reflected by the survival of donor cells and upregulated expression of meniscal fibrochondrocytes related genes. Thus, based on our study, further clinical experiments are needed to investigate synovium and PJAC transplant as a possible treatment to meniscal defects.

10.
Arthroscopy ; 38(3): 850-859.e2, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34052387

RESUMO

PURPOSE: To investigate the kinematics differences between round-tunnel (ROT) and flat-tunnel (FLT) techniques in anterior cruciate ligament (ACL) reconstruction when using hamstring graft. METHODS: Nine matched pairs of fresh-frozen cadaveric knees were evaluated for the kinematics of intact, ACL-sectioned, and either ROT or FLT reconstructed knees. The graft bundles for FLT technique were separately tensioned. A 6 degrees of freedom robotic system was used to assess knee laxity: (1) 134-N anterior tibial load at 0°, 15°, 30°, 60°, and 90°of knee flexion; (2) 10 Nm of valgus torque followed by 5 Nm of internal rotation torque simulates a pivot-shift test at 15° and 30°; (3) 5-Nm internal and external rotation torques at 0°, 15°, 30°, 60°, and 90°; (4) 10-Nm varus and valgus torques at 15° and 30°. RESULTS: Significant differences were found for ROT versus FLT techniques in terms of the simulated pivot-shift test at 15° (2.5 mm vs 1.4 mm, respectively, difference from intact; P =.039) and the internal rotation test at 15° (2.5° vs 0.5°, respectively, difference from intact; P =.034) and 30° (2.0° vs 0.4°, respectively, difference from intact; P =.014). No significant differences were found between groups during 134-N anterior tibial load, external rotation and valgus/varus rotation. Neither technique was able to reproduce the intact state during an anterior tibial load and simulated pivot-shift test. CONCLUSIONS: The FLT technique with independently tensioned bundles shows the same anterior control as the ROT technique but better restores rotational stability in terms of the simulated pivot-shift test and the internal rotation test in anatomic ACL reconstruction at time zero. CLINICAL RELEVANCE: The FLT technique with independently tensioned bundles of ACL reconstruction appears to be a viable, more anatomic technique than the ROT technique in mimicking flat anatomy and rotational stability of native ACL.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Instabilidade Articular , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Fenômenos Biomecânicos , Cadáver , Humanos , Instabilidade Articular/cirurgia , Articulação do Joelho/cirurgia , Amplitude de Movimento Articular
11.
Bioact Mater ; 8: 505-514, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34541416

RESUMO

Although advances in protein assembly preparation have provided a new platform for drug delivery during tissue engineering, achieving long-term controlled exosome delivery remains a significant challenge. Diffusion-dominated exosome release using protein hydrogels results in burst release of exosomes. Here, a fibroin-based cryo-sponge was developed to provide controlled exosome release. Fibroin chains can self-assemble into silk I structures under ice-cold conditions when annealed above the glass transition temperature. Exosome release is enzyme-responsive, with rates primarily determined by enzymatic degradation of the scaffolds. In vivo experiments have demonstrated that exosomes remain in undigested sponge material for two months, superior to their retention in fibrin glue, a commonly used biomaterial in clinical practice. Fibroin cryo-sponges were implanted subcutaneously in nude mice. The exosome-containing sponge group exhibited better neovascularization and tissue ingrowth effects, demonstrating the efficacy of this exosome-encapsulating strategy by realizing sustained release and maintaining exosome bioactivity. These silk fibroin cryo-sponges containing exosomes provide a new platform for future studies of exosome therapy.

12.
Front Cell Dev Biol ; 9: 793820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957120

RESUMO

Healing outcomes of meniscal repair are better in younger than in older. However, exact mechanisms underlying superior healing potential in younger remain unclear from a histological perspective. This study included 24 immature rabbits and 24 mature rabbits. Tears were created in the anterior horn of medial meniscus of right knee in each rabbit. Animals were sacrificed at 1, 3, 6, and 12 weeks postoperatively. We performed macroscopic and histological evaluations of post-meniscal repair specimens. Cells were counted within a region of interest to confirm cellularization at tear site in immature menisci. The width of cell death zone was measured to determine the region of cell death in mature menisci. Apoptosis was evaluated by TUNEL assay. Vascularization was assessed by CD31 immunofluorescence. The glycosaminoglycans and the types 1 and 2 collagen content was evaluated by calculating average optical density of corresponding histological specimens. Cartilage degeneration was also evaluated. Healing outcomes following untreated meniscal tears were superior in immature group. Recellularization with meniscus-like cell morphology was observed at tear edge in immature menisci. Superior recellularization was observed at meniscal sites close to joint capsule than at sites distant from the capsule. Recellularization did not occur at tear site in mature group; however, we observed gradual enlargement of cell death zone. Apoptosis was presented at 1, 3, 6, 12 weeks in immature and mature menisci after untreated meniscal tears. Vascularization was investigated along the tear edges in immature menisci. Glycosaminoglycans and type 2 collagen deposition were negatively affected in immature menisci. We observed glycosaminoglycan degradation in mature menisci and cartilage degeneration, specifically in immature cartilage of the femoral condyle. In conclusion, compared with mature rabbits, immature rabbits showed more robust healing response after untreated meniscal tears. Vascularization contributed to the recellularization after meniscal tears in immature menisci. Meniscal injury fundamentally alters extracellular matrix deposition.

13.
Front Cell Dev Biol ; 9: 758217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778268

RESUMO

Injuries to menisci are the most common disease among knee joint-related morbidities and cover a widespread population ranging from children and the general population to the old and athletes. Repair of the injuries in the meniscal avascular zone remains a significant challenge due to the limited intrinsic healing capacity compared to the peripheral vascularized zone. The current surgical strategies for avascular zone injuries remain insufficient to prevent the development of cartilage degeneration and the ultimate emergence of osteoarthritis (OA). Due to the drawbacks of current surgical methods, the research interest has been transferred toward facilitating meniscal avascular zone repair, where it is expected to maintain meniscal tissue integrity, prevent secondary cartilage degeneration and improve knee joint function, which is consistent with the current prevailing management idea to maintain the integrity of meniscal tissue whenever possible. Biological augmentations have emerged as an alternative to current surgical methods for meniscal avascular zone repair. However, understanding the specific biological mechanisms that affect meniscal avascular zone repair is critical for the development of novel and comprehensive biological augmentations. For this reason, this review firstly summarized the current surgical techniques, including meniscectomies and meniscal substitution. We then discuss the state-of-the-art biological mechanisms, including vascularization, inflammation, extracellular matrix degradation and cellular component that were associated with meniscal avascular zone healing and the advances in therapeutic strategies. Finally, perspectives for the future biological augmentations for meniscal avascular zone injuries will be given.

14.
Orthop Surg ; 13(6): 1697-1706, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34351067

RESUMO

The hip joint is the largest weight-bearing joint in the body and is surrounded by dense capsules and thick muscles. Hip arthroscopic techniques are suitable for the treatment of hip-related conditions. These minimally invasive techniques have rapidly developed in China since 2007. Moreover, they have been used in the treatment of gluteal muscle contracture, snapping hip syndrome, femoral acetabular impingement, acetabular labral injury, hip labral calcification, synovial chondroma, osteoid osteoma, synovitis, osteonecrosis of the femoral head, and developmental dysplasia of the hip. This technique has showed its advantage in the total debridement of lesions, precision treatment, and less trauma. However, we lack understanding of the overall development of arthroscopic techniques in China. This review illustrates the recent development of hip arthroscopic techniques in China and related research progress.


Assuntos
Artroscopia/métodos , Lesões do Quadril/diagnóstico , Lesões do Quadril/cirurgia , Artropatias/diagnóstico , Artropatias/cirurgia , China , Humanos
15.
Acta Biomater ; 131: 262-275, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34157451

RESUMO

Decellularized extracellular matrix (dECM) hydrogels are being increasingly investigated for use in bio-inks for three-dimensional cell printing given their good cytocompatibility and biomimetic properties. The osmotic pressure and stiffness of bio-ink are important factors affecting the biological functions of printed cells. However, little attention has been given to the osmotic pressure and stiffness of the dECM bio-inks. Here, we compared three types of commonly used acidic solutions in the bio-fabrication of a tendon derived dECM bio-ink for 3D cell printing (0.5 M acetic acid, 0.1 M hydrochloric acid and 0.02 M hydrochloric acid). We found that low pH value of 0.1 M hydrochloric acid could accelerate the digestion process for dECM powders. This could lead to a much softer dECM hydrogel with storage modulus less than 100 Pa. This soft dECM hydrogel facilitated the spreading and proliferation of stem cells encapsulated within it. It also showed better tendon-inducing ability compared with two others much stiffer dECM hydrogels. However, this over-digested dECM hydrogel was more unstable as it could shrink with the culture time going on. For 0.5 M acetic acid made dECM bio-ink, the hyperosmotic state of the bio-ink led to much lower cellular viability rates. Postprocess (Dilution or dialysis) to tailor the osmotic pressure of hydrogels could be a necessary step before mixed with cells. Thus, kindly choosing the type and concentration of acidic solution is necessary for dECM bio-ink preparation. And a balance should be made between the digestion period, strength of acidic solution, as well as the size and concentration of the dECM powders. STATEMENT OF SIGNIFICANCE: The dECM bio-ink has been widely used in 3D cell printing for tissue engineering and organ modelling. In this study, we found that different types of acid have different digestion and dissolution status for the dECM materials. A much softer tendon derived dECM hydrogel with lower stiffness could facilitate the cellular spreading, proliferation and tendon differentiation. We also demonstrated that the osmotic pressure should be taken care of in the preparation of dECM bio-ink with 0.5 M acetic acid. Thus, kindly choosing the type and concentration of acidic solution is necessary for dECM bio-ink preparation.


Assuntos
Matriz Extracelular , Tinta , Hidrogéis/farmacologia , Impressão Tridimensional , Tendões , Engenharia Tecidual , Tecidos Suporte
16.
ACS Biomater Sci Eng ; 7(3): 916-925, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33715368

RESUMO

The development of 3D printing techniques has provided a promising platform to study tissue engineering and mechanobiology; however, the pursuit of printability limits the possibility of tailoring scaffolds' mechanical properties. The brittleness of those scaffolds also hinders potential clinical application. To overcome these drawbacks, a double-network ink composed of only natural biomaterials is developed. A shear-thinning hydrogel made of silk fibroin (SF) and methacrylated hyaluronic acid (MAHA) presents a high mechanical modulus with a low concentration of macromers. The physical cross-linking due to protein folding further increases the strength of the scaffolds. The proposed SF/MAHA scaffold exhibits a storage modulus 10 times greater than that of methacrylated gelatin scaffold, along with better flexibility and biodegradation. The synergistic effect between fibroin and hyaluronic allows us to tailor the mechanical strength of scaffolds without compromising their printability. The hierarchy porous structure of the SF/MAHA scaffolds offers a better spatial microenvironment for the migration and proliferation of cells compared to gelatin scaffolds. For the first time, this strategy achieves 3D printing of natural biomaterials with controlled mechanical characteristics by manipulating the cross-linking of peptide chains. The design of such ductile scaffolds with hydrolysis resistance provides a new platform for the mechanobiology research. It also shows promise in the tissue engineering of musculoskeletal system where structural strength is needed.


Assuntos
Fibroínas , Materiais Biocompatíveis , Impressão Tridimensional , Engenharia Tecidual , Tecidos Suporte
17.
Acta Biomater ; 119: 485-498, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130305

RESUMO

Although various biodegradable materials have been investigated for ligament reconstruction fixation in the past decades, only few of them possess a combination of high mechanical properties, appropriate degradation rate, good biocompatibility, and osteogenic effect, thus limiting their clinical applications. A high-strength Zn-0.8Mn-0.4Mg alloy (i.e., Zn08Mn04Mg) with yield strength of 317 MPa was developed to address this issue. The alloy showed good biocompatibility and promising osteogenic effect in vitro. The degradation effects of Zn08Mn04Mg interference screws on the interface between soft tissue and bone were investigated in anterior cruciate ligament (ACL) reconstruction in rabbits. Compared to Ti6Al4V, the Zn alloy screws significantly accelerated the formation of new bone and further induced partial tendon mineralization, which promoted tendon-bone integration. The newly developed screws are believed to facilitate early joint function recovery and rehabilitation training and also avoid screw breakage during insertion, thereby contributing to an extensive clinical prospect.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Ligas/farmacologia , Animais , Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Parafusos Ósseos , Coelhos , Zinco
18.
Front Cell Dev Biol ; 8: 694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903809

RESUMO

Articular cartilage damage remains a tough challenge for clinicians. Stem cells have emerged promising biologics in regenerative medicine. Previous research has widely demonstrated that adipose-derived mesenchymal stem cells (ADSCs) can promote cartilage repair due to their multipotency. However, enzymatic isolation and monolayer expansion of ADSCs decrease their differentiation potential and limit their clinical application. Here, a novel adipose tissue-derived product, extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel), was obtained by simple mechanical shifting and centrifugation to separate the fat oil and concentrate the effective constituents. This study aimed to evaluate the therapeutic effect of this natural biomaterial on the repair of articular cartilage defects. Scanning electron microscopy showed that the fibrous structure in the ECM/SVF-gel was preserved. ADSCs sprouted from the ECM/SVF-gel were characterized by their ability of differentiation into chondrocytes, osteoblasts, and adipocytes. In a rabbit model, critical-sized cartilage defects (diameter, 4 mm; depth, 1.5 mm) were created and treated with microfracture (MF) or a combination of autologous ECM/SVF-gel injection. The knee joints were evaluated at 6 and 12 weeks through magnetic resonance imaging, macroscopic observation, histology, and immunohistochemistry. The International Cartilage Repair Society score and histological score were significantly higher in the ECM/SVF-gel group than those in the MF-treated group. The ECM/SVF-gel distinctly improved cartilage regeneration, integration with surrounding normal cartilage, and the expression of hyaline cartilage marker, type II collagen, in comparison with the MF treatment alone. Overall, the ready-to-use ECM/SVF-gel is a promising therapeutic strategy to facilitate articular cartilage regeneration. Moreover, due to the simple, time-sparing, cost-effective, enzyme-free, and minimally invasive preparation process, this gel provides a valuable alternative to stem cell-based therapy for clinical translation.

19.
Biofabrication ; 12(4): 045011, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32640428

RESUMO

Improving the printability of pure, decellularized extracellular matrix (dECM) bio-ink without altering its physiological components has been a challenge in three-dimensional (3D) cell printing. To improve the printability of the bio-ink, we first investigated the digestion process of the powdered dECM material obtained from porcine tendons. We manifested the digestion process of tendon derived dECM powders, which includes dissolution, gelatinization and solubilization. After a short dissolution period (around 10 min), we observed a 'High viscosity slurry' status (3 h) of the dECM precursors, i.e. the gelatinization process, followed by the solubilization processes, i.e. a 'Medium viscosity slurry' period (12 h) and a 'Low viscosity slurry' period (72 h). The 'Medium viscosity slurry' status of the dECM bio-ink was inhomogeneous and could not be extruded out from the barrel after the pH value was neutralized to 7.4. Although the 'Low viscosity slurry' status of the dECM bio-ink has been reported to be extrudable, it has poor printability. This study explores the printability of the 'High viscosity slurry' status of the dECM bio-ink, which has not been addressed thus far. The results demonstrate that this less digested status of the dECM bio-ink yields higher shape fidelity and stacking accuracy than the traditional over-digested status of the dECM bio-ink; this indicates better printability of this less digested dECM bio-ink. We compared the performance of the two bio-inks using cell viability tests for 3D cell printing. Bone marrow mesenchymal stem cells derived from rats was printed using the 'High viscosity slurry' status of the dECM bio-ink, yielding high cellular viability lasting for 7 d after printing. Thus, the 'High viscosity slurry' status of tendon dECM bio-ink can be utilized to fabricate complicated 3D organoid structures; it also shows promise for applications such as regenerative medicine and biomimetic tissue engineering.


Assuntos
Bioimpressão , Matriz Extracelular/metabolismo , Impressão Tridimensional , Tendões/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Células-Tronco Mesenquimais/citologia , Pós , Pressão , Ratos Sprague-Dawley , Reologia , Resistência ao Cisalhamento , Solubilidade , Suínos
20.
Theranostics ; 10(11): 5090-5106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308770

RESUMO

Meniscus deficiency, the most common and refractory disease in human knee joints, often progresses to osteoarthritis (OA) due to abnormal biomechanical distribution and articular cartilage abrasion. However, due to its anisotropic spatial architecture, complex biomechanical microenvironment, and limited vascularity, meniscus repair remains a challenge for clinicians and researchers worldwide. In this study, we developed a 3D printing-based biomimetic and composite tissue-engineered meniscus scaffold consisting of polycaprolactone (PCL)/silk fibroin (SF) with extraordinary biomechanical properties and biocompatibility. We hypothesized that the meticulously tailored composite scaffold could enhance meniscus regeneration and cartilage protection. Methods: The physical property of the scaffold was characterized by scanning electron microscopy (SEM) observation, degradation test, frictional force of interface assessment, biomechanical testing, and fourier transform infrared (FTIR) spectroscopy analysis. To verify the biocompatibility of the scaffold, the viability, morphology, proliferation, differentiation, and extracellular matrix (ECM) production of synovium-derived mesenchymal stem cell (SMSC) on the scaffolds were assessed by LIVE/DEAD staining, alamarBlue assay, ELISA analysis, and qRT-PCR. The recruitment ability of SMSC was tested by dual labeling with CD29 and CD90 by confocal microscope at 1 week after implantation. The functionalized hybrid scaffold was then implanted into the meniscus defects on rabbit knee joint for meniscus regeneration, comparing with the Blank group (no scaffold) and PS group. The regenerated meniscus tissue was evaluated by histological and immunohistochemistry staining, and biomechanical test. Macroscopic and histological scoring was performed to assess the outcome of meniscus regeneration and cartilage protection in vivo. Results: The combination of SF and PCL could greatly balance the biomechanical properties and degradation rate to match the native meniscus. SF sponge, characterized by fine elasticity and low interfacial shear force, enhanced energy absorption capacity of the meniscus and improved chondroprotection. The SMSC-specific affinity peptide (LTHPRWP; L7) was conjugated to the scaffold to further increase the recruitment and retention of endogenous SMSCs. This meticulously tailored scaffold displayed superior biomechanics, structure, and function, creating a favorable microenvironment for SMSC proliferation, differentiation, and extracellular matrix (ECM) production. After 24 weeks of implantation, the histological assessment, biochemical contents, and biomechanical properties demonstrated that the polycaprolactone/silk fibroin-L7 (PS-L7) group was close to the native meniscus group, showing significantly better cartilage protection than the PS group. Conclusion: This tissue engineering scaffold could greatly strengthen meniscus regeneration and chondroprotection. Compared with traditional cell-based therapies, the meniscus tissue engineering approach with advantages of one-step operation and reduced cost has a promising potential for future clinical and translational studies.


Assuntos
Cartilagem Articular/citologia , Fibroínas/química , Menisco/citologia , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Impressão Tridimensional/instrumentação , Engenharia Tecidual/métodos , Tecidos Suporte/química , Animais , Fenômenos Biomecânicos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Diferenciação Celular , Células Cultivadas , Menisco/efeitos dos fármacos , Menisco/metabolismo , Células-Tronco Mesenquimais/metabolismo , Porosidade , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...